Linear predictors from noise
Starting from an ARMA process y(t)=W(z)e(t)=A(z)C(z)e(t), wehere e(t)∼WN(0,λ2) we know that y(t) is a steady state solution and y(t)∼MA(∞), so:
y(t)=w0e(t)+w1e(t−1)+...+wie(t−i)+...=i=0∑+∞wie(t−i)
Where wi=f(parameters of C(z) and A(z)).
The predictor: y^(t+k∣t)=a0y(t)+a1y(t−1)+...+aiy(t−i)+... can be written as:
y^(t+k∣t)=a0[i=0∑+∞wie(t−i)]+a1[i=0∑+∞wie(t−1−i)]+...=
=a0[w0e(t)+w1e(t−1)+...]+a1[w0e(t−1)+w1e(t−2)+...]+...
Arranging the terms:
y^(t+k∣t)=β0e(t)+β1e(t−1)+...=i=0∑+∞βie(t−i)
Where:
β0=a0w0\newlinwβ1=a0w1+a1w1...