Skip to main content

Non zero mean ARMA

Consider the ARMA process y(t)=C(z)A(z)e(t)y(t)=\frac{C(z)}{A(z)}e(t) where is a non zero mean white noisee(t)WN(μ,λ2)e(t) \sim WN(\mu,\lambda^2).

Gain theorem

If W(z)=C(z)A(z)W(z)=\frac{C(z)}{A(z)} is assintotically stable, then: my=E[y(t)]=C(1)A(1)μm_y=\mathbb{E}[y(t)]=\frac{C(1)}{A(1)}\mu

Unbiased processes

Considering y(t)y(t) we can defined the unbiased processes as: y~(t)=y(t)my\tilde{y}(t)=y(t)-m_y e~(t)=e(t)μ\tilde{e}(t)=e(t)-\mu which are both zero mean processes: E[y~]=E[y(t)my]=mymy=0\mathbb{E}[\tilde{y}]=\mathbb{E}[y(t)-m_y]=m_y-m_y=0 E[e~]=E[e(t)μ]=μμ=0\mathbb{E}[\tilde{e}]=\mathbb{E}[e(t)-\mu]=\mu-\mu=0

We can then sobstitute these processes in the recursive equation: y~(t)=C(z)A(z)e~(t)\tilde{y}(t)=\frac{C(z)}{A(z)}\tilde{e}(t) Which is a zero mean ARMA.

If we compute the covariance function of y~(t)\tilde{y}(t): γy~(τ)=E[y~(t)y~(tτ)]=E[(y(t)my)(y(tτ)my)]=γy(τ) \gamma_{\tilde{y}}(\tau)=\mathbb{E}[\tilde{y}(t)\tilde{y}(t-\tau)]=\newline \mathbb{E}[(y(t)-m_y)(y(t-\tau)-m_y)]=\gamma_y(\tau)

So the unbiased process y~(t)\tilde{y}(t) has the same covariance of y(t)y(t).