Shift operators
The shift operators are:
- $z^{-1}$ backward shift operator
- $z^1$ forward shift operator
Given a stochastic process $y(t,s)$ then $z^-1y(t,s)=y(t-1,s)$ which has the same realization shifted one time instant backwards.
Properties
The shift operators:
- are linear: $$z^{-1}(av(t)+by(t))=az^{-1}v(t)+bz^{-1}y(t)$$
- can be recursively combined: $$z^{-1}(z^{-1}(z^{-1}(y(t))))=z^{-3}y(t)$$
No Comments